

Simulation of Photons Attenuation in Overburden

Kevin Lee UCLA

Background Estimates

Leon's novadoc 409-v2

The numbers are for Supernova detection with continuous cycle!

Depth	Signal	EM bkd	Neutron	S/sqrt(b)
0m	1500	10,000	3,000	13
1m	1500	1800	424	30
2m	1500	320	60	77
3m	1500	57	8.5	185
4m	1500	10	1.2	450

Mar 11-12, 2006 NOvA Meeting

Electrons and photons

Integral electron and photon flux at surface

- Data from Daniels and Stephens; Revs Geophys. And Space Sci. 12, 233(1974)
- $\sim \cos^2\theta$ for $\theta < 60^\circ$
- Median energy " 10s of MeV
- Attenuated as

eV nuated as ~exp(-x/175g.cm⁻²) xnl

Mar 11-12, 2006 NOvA Meeting

Leon Mualem

Photon background vs. Overburden depth

 Reduction from 2560 events of photon backgrour vs. depth

Simple Geometry Studies

- •5 GeV gamma
- •Forming a shower in less than 0.5 m depth
- •farthest left block is 2 gm/cc Earth
- A series of Geant4 runs is done for a simple geometry of slab layers of Earth's crust composition, for different gamma photon energies directed perpendicular to the slabs.
- The density used is 2 g/cc and should be higher, but no more than ~5 g/cc.
- There are large showers beyond the primary tracks.

10 MeV: rho = 2 g/cc;

lambda = 27.8 cm

50 MeV: rho = 2 g/cc;

lambda = 33.6 cm

100 MeV: rho = 2 g/cc; lambda = 27.8 cm

10 MeV: rho = 2 g/cc;

lambda = 23 cm

50 MeV: rho = 2 g/cc;

lambda = 18 cm.

100 MeV: rho = 2 g/cc; lambda = 17 cm

Overburden (L. Mualem)

Attenuation length at1GeV: ~125g/cm2; ~60cm

Mar 11-12, 2006 NOvA Meeting

Summary

- The plots are In(N) vs. primary track lengths to show an attenuation of the primary tracks through the layers below 50 cm.
- There are gammas, e– and e+ in the shower plumes always and [physicswise] also pions above for primary gammas above 140 MeV.
- In the far detector concept with an overburden, cosmic gamma photons can be attenuated
- If the lambda ~30 cm is value, then 150 times with a 1 1/2 m overburden as long as the subsequent showers of charged particles can be discriminated by the NOvA detector.
- Ongoing: track lengths of tertiaries of gammas and pi0's